

The University of Jordan

Accreditation & Quality Assurance Center

Course Syllabus

CourseName

0301911 Functional analysis

1	Course title	Functional Analysis		
2	Course number	0301911		
	Credit hours (theory,	3		
3	practical)			
3	Contact hours (theory,	3		
	practical)			
4	Prerequisites/corequisites	Functional analysis Master		
5	Programtitle	PhD. In Mathematics		
6	Programcode			
7	Awarding institution	The University of Jordan		
8	Faculty	Science		
9	Department	Mathematics		
10	Level of course	Compulsory specialization		
10		requirement		
11	Year of study andsemester(s)	1 st year, 2 nd semester		
12	Final Qualification	PhD. In Mathematics		
13	Other department(s) involved in teaching the course			
14	Language of Instruction	English		
15	Date of production/revision	20/10/2020		

16. Course Coordinator:

R. Khalil

17.0ther instructors:

Professor A.Talafha Prof. Yousef, A.

18. Course Description:

Theory of Banach spaces , Main theorems in Functional analysis: Hahn Banach Theorem, closed graph theorem, open mapping theorem, Uniform boundedness principle, and the KreinMilman Theorem. Spectral theory of bounded linear operators. Analysis of Compact operators

1.

2.19. Course aims and outcomes:3.

A- Aims: to understand spectral theory of bounded linear operators and to know the structure of compact operators on Banach spaces

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

B1. To know the deep structure of Banach spaces

B2. To know different structures of Banach spaces

B3. To ask questions in functional analysis

B4. To classify operators compact or not

B5. To be able to classify operators according to the spectrum

20. Topic Outline and Schedule:

Торіс	Week	Instructor	Achieved ILOs	Evaluation Methods	Reference
4.Banach	5.1	6.	7.B4	8.Hom	9.Rudi
spaces				ewor	n
				k	
6.Bounded	10. 2	11.	B1	12. Fir	Rudin

1:				~ 4	
linear				st	
operators				exa	
				m	
13. Spectral	14. 3	15.	B1	16. Ho	Rudin
theory				me	
				wor	
				k	
8.Spectral	17. 4	18.	19. B1,	20. Se	Rudin
theory2			B2	cond	
				exa	
				m	
21. Compac	22. 5	23.	24. B1,	25. Pr	Rudin
t operators	-6		B3	esen	
				tatio	
				n	
				26. Se	
				cond	
				Exa	
				m	
27. Compac	28.7	29.	30. B1,	31. Ho	32.Rudin
t operators			B4	mew	
				ork	
33. Applicat	34. 8	35.	36. B1,	37. Pr	Conway
ions of			B4	esen	
spectral				tatio	
theory				n	
38. Applicat	39. 9	40.	41. B1,	42. fin	Taylor

ions of			B5	al	
compact					
operators					
43. Resolve	44. 1	45.	46. B1,	47. Ho	Taylor
nets of	0		B5	mew	
Operators				ork	
48. KrienMi	49. 1	50.	51. B1,	52. Th	Foot &Dummit
lman	1		B5	ird	
Theorem				Exa	
				m	
53. Extreme	54. 1	55.	56. B1,	Homework	Rudin
points	2		B6		
57. Extrema	58. 1	59.	60. B7	Homework	Rudin
of linear	3				
functional					
S					
61. Applicat	62. 1	63.	64. B7	Homework	Krisique
ion to	4				
optimizati					
on					

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following teaching and learning methods:

In order to succeed in this course, each student needs to be an active participant in learning – both in class and out of class.

- Class time will be spent on lecture as well as discussion of homework problems and some group work.

- To actively participate in class, you need to prepare by reading the textbook and doing all assigned homework before class (homework will be assigned each class period, to be discussed the following period).

- You should be prepared to discuss your homework (including presenting your solutions to the class) at each class

meeting - your class participation grade will be determined by your participation in this.

You are encouraged to work together with other students and to ask questions and seek help from the professor, both in and out of class.

22. Evaluation Methods and Course Requirements:

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment methods</u> and requirements:

ILO/s	Learning Methods	Evaluation Methods	Related ILO/s to the program
	Lectures	Exam	
		Presentation	
		Homework	

23. Course Policies:

- 1. The student is not allowed to take the course and its pre-requisite in the same time.
- 2. Attendance is absolutely essential to succeed in this course. You are expected to attend every class; please notify your instructor if you know you are going to be absent. All exams must be taken at the scheduled time. Exceptions will be made only in extreme circumstances, by prior arrangement with the instructor.
- 3. If a student is absent for more than 10% of lectures without an excuse of sickness or due to other insurmountable difficulty, then he/she shall be barred from the final examination also he/she will get a failing grade in this course.
- 4. Medical certificates shall be given to the University Physician to be authorized by him. They should be presented to the Dean of the Faculty within two weeks of the student's ceasing to attend classes.
- 5. Test papers shall be returned to students after correction. His/her mark is considered final after a lapse of one week following their return.
- 6. Solutions for the exams questions and marks will be announced at the webpage of the instructor: <u>http://eacademic.ju.edu.jo/eabuosba/default.aspx</u>

7. Cheating is prohibited. The University of Jordan regulations on cheating will be applied to any student who cheats in exams or on homeworks.

24. Required equipment:

25. References:

Rudin, W. Functional analysis

Helemberg, G. Spectral theory in Hilbert spaces

John Conway. A course in functional analysis

26. Additional information:

Name of Course Coordinator: Professor Khalil, R.Signature:R. Khalil Date: 29/3/2012
Head of curriculum committee/Department: Signature:
Head of Department: Signature:
Head of curriculum committee/Faculty: Signature:
Dean:

<u>Copy to:</u> Head of Department Assistant Dean for Quality Assurance Course File